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S U M M A R Y  
An asymptotic expansion for two-dimensional outwardly radiating fields is developed from an integral representation 
of these fields by means of a saddle point integration. The expansion is given in terms of inverse powers of the distance 
from a point in a fixed region to a point in a circular neighborhood at a large distance from that region. The coefficients 
are expressed in terms of plane waves and linear combinations of derivatives of plane waves with respect to angle of 
incidence. The theorem may be employed in scattering problems in reducing scattering of arbitrary two-dimensional 

�9 fields by arbitrary cylinders to scattering of plane waves by the arbitrary cylinders. 

1. Introduction 

Plane waves and cylindrical waves are related to each other. In fact, the radiation from a 
collection of cylindrical sources within a bounded cylindrical domain, when viewed by an 
observer at an infinite distance, cannot be distinguished from a plane wave. As the observer 
approaches closer to the source region, the nature of the radiation may appear cylindrical or 
perhaps even more complicated. If, however, the distance from the source is sufficiently large, 
it may be said that the wave is almost, but not quite, a plane wave. 

This paper is concerned with a particular relationship between a general cylindrically radiated 
wave and a plane wave.A radiated wave or radiated field is defined as a solution of the Helmholtz 
equation which satisfies the Sommerfeld radiation condition for an outgoing wave. It is shown 
here that a radiated wave is expressible as an asymptotic series involving plane waves and their 
derivatives of various orders with respect to angle, thus furnishing a correction to the plane 
wave approximation. A few terms of this series, obtained previously by Zitron and Karp [12], 
were utilized to good advantage m dealing with multiple scattering of plane waves by two 
widely spaced parallel cylinders of arbitrary shape. The present paper gives an explicit expression 
for the general term of the series whose coefficients are linear combinations of plane waves and 
their derivatives with respect to angle of incidence. This representation also provides a more 
efficient way of calculating the terms of the expansion than was used before (see Zitron and 
Karp [12]). These results were reported earlier in abstracted form (Karp and Zitron [4]). 

The major result presented in this paper is an asymptotic expansion of an integral representa- 
tion for a cylindrically radiated field in a distant finite region. Application of the saddle point 
method to this integral yields a power series in inverse half-integral powers of kd, where k is 
the propagation constant and d is a long distance by which the origin O of a coordinate system 
located in the source region has been translated. Since the coefficients in the asymptotic 
expansion turn out to be linear combinations of plane waves and their derivatives of various 
orders with respect to angle of incidence, the expansion can be used to represent the given field 
in a new coordinate system as a plane wave plus a correction for the curvature of the wavefront 
in the~ neighborhood of a scatterer located near the origin O' of the new coordinate system. 
The correction terms appear in the form of derivatives of plane waves with respect to angle of 
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incidence. The latter is merely a parameter. Thus the theorem has special utility in scattering 
problems, since the response to the incident wave can be given in terms of derivatives of the 
response to a plane wave as was done by the authors (Zitron and Karp [12]) in a previous paper. 
It is possible, then, by means of this expansion, to determine the scattered field when radiation 
from a cylindrical region is incident upon a cylindrical scatterer and also to reduce multiple 
scattering problems to single scattering problems. Both of these cases may be treated in a quite 
general manner without reference to the detailed nature of the incident radiation or the shape 
or composition of the scatterer. In this respect, the expansion theorem may be used in place of 
addition theorems which are applicable only when suited to the special geometry of the sources 
and scatterers and which, even in such cases, may be clumsier to apply. 

2. Derivation of the expansion 

Let A be a fixed region of arbitrary size (Figure 1) and let d be the distance from a point O 
at the center of the smallest circle containing A to the center O' of a circle B. Let the diameters 
of the circles A and B be small in comparison with d. Let P be a point in B other than O'. Let 
r and 0 be the polar coordinates of P with origin at O, where 0 is measured from the O -O '  axis. 

B 

Figure 1. Region A contains a distribution of sources and scatterers. The broken line is a circle circumscribed about A. 
Region B is a circular neighborhood in which the plane wave expansion is valid. 

Let x and y be cartesian coordinates of P with origin at O'. The principal result of this paper 
may then be stated as follows: 

Theorem. Consider any two-dimensional radiated field represented by 

u(r, O) = f_ f(f l)  elk . . . .  (o-P)dfi (1) 
tiC' 1 

in the exterior of a bounded domain A with center 0 containin9 any combination of sources and 
scatterers where C, is the Sommerfeld contour for H(ol)(kr) and f (fl) is analytic. Then u (r, O) has 
an asymptotic expansion in any neighborhood B of a point O' such that B is disjoint with respect 
to the smallest circle containing A provided that kd ~ 1 where d is the distance between 0 and O' 
(Figure 1). The expansion is 9iven in terms of plane waves and their derivatives with respect to 
angle as follows: 

u ~ e ika ~ h(2t)(0) r ( t + l )  for any n,  (2) 
t=o (2t)! (kd) t+~ 

where ~2'--P~C2t(~";t(2tp) (p) [2 j ,  [j] 
h(Zt)(0) = Z -v  -~  (fl (0)) - (fls(0)) f - ' ( 0 ) v  "(0) (2a) 

p=o x=o j -o  2! 
and 
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r (t) is the Gamma function, C~ = 2 !/(j !(2 - j )  !), v (fl) = e ik ( . . . .  ~ +,~in ~), 

f [a -S l (O)  = f ( f l  (/7.(0)) (") = Lds-~7~/7(s , 
fl=O s=O 

[ 
= L /7 (s ' 

s=O 

fl(s) = arccos(1 + is2), fi~(0) = dss s=o" 

Proof 
Let 

u(r, O) = fc, eik'~~176 

(see Stratton [-7]) where f(fl) is analytic and C 1 is the Sommerfeld contour employed in the 
integral representation of H{ol)(kr) (See Figure 2). [The time dependence is assumed to be 
e-i~,~.] Expansion of cos ( 0 -  fi)in the exponent of (1)in terms of x, y, and d (Figure 1) yields 

u(r,O)= (_ e ik( . . . .  n+'~i"n)f(fl) eika~~ i_ g(fl) eikd~~ (3) 
dc i J C  l 

where g(fl)= elk( . . . .  ~+,slnp)f(fl). 
It is clear that e ~kd ~~ ~ varies rapidly for large d and that the saddle point method is appropriate 

for evaluation of the integral. No difficulty is encountered in shifting the contour as d becomes 

' / r  B-- B--o-g B = 

SADDLE CONTOUR 
OF STEEPEST DESCENT 

SOMMERFELD 
CONTOUR 

Figure 2. The Sommerfeld contour  and the saddle point contour.  
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large since the integrand is analytic. The transformation cos fl = 1 + is z transforms C1 into a 
steepest descent contour (Figure 2) and (3) into 

f') dfl e-kdS2 ds = elke f ~ h [fl(s) ] e-keS2 ds , (4) u = e ' ~  g ( f l ( s ) )  
- o o  - o o  

where 

h[fl(s)] - e ~ (  . . . .  ~ ( s ) + . i ~  d f l  
ds 

If h [fl(s)] is expanded in a Taylor series about the saddle point s = 0 and a finite number of 
these terms are retained, it is clear that 

r m=o ,~=o m! Ira, (5) 

Where 

In= f ~  sme-kdS2ds 

and the superscribed parenthesis signifies differentiation with respect to s. 
The function h(m)(s) can be represented in terms of derivatives of plane waves as follows: 

h (~) = (gfls) (~) = ~ C~g(~-e)fl~ p) 
p = 0  

by Leibnitz's Rule (Courant [2]). 
A rule given by Faa di Bruno (Riordan [5]) for higher order derivatives of implicit functions 

yields 
m--V ~ C~ 

g(,.-p) = ~ (_ 1)~ Z y(fl~-,)(m-~,gr~, 2 = 0  I = 0  

where the square bracketed superscript signifies differentiation with respect to ft. But fl(O)=O. 
Therefore, 

m-p (fl2(O))(m-p) g[2](0) . 
g(m-')(0) = Z ~, 

2 = 0  

A further application of Leibnitz's rule yields 
2 

g"~(o) = Z cCf"-J~(o)v~J~(o). 
j =O  

Therefore 

h(m)(O) = E ~Ce Cj (flx(0))(z_v)(fl~v)(O))fta_jl(O ) vt/l(0 ) . 
p=O 3,=0 j=O 

Evaluation of Im results in 

0,  m odd 

I~ = r ( �89189  m even 

Let m = 2t. Then 

0,  m odd 

I2t= F(t+�89 ~(2t+1), m even ( t = 0 , 1 , 2  . . . .  )" 

and 
u,.~ e ika ~ h(2t)(0) F(t+�89 

t=o (20! (kd) t+~' 
(6) 
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where 
2t-p ~ (~2tCL 

h(2t)(0) = 2 - P  - j  v=o z=o j=0 ~ (fla(0))(z' p)(fis(O)){p)fta-al(O)vtal(O)" (7) 

It is convenient to note that 

t0, p odd 
fl}P) (0) = [.2�89 + a)e-i[}(p+ 1)]�89 {p ]/[2P(�89 ) !]  }2 = 2~+~-e i(v+�89189 [(2v)!/(22~ v !)]2,  

where p = 2v, v = 0, 1, 2 . . . . .  p even (8) 

3. Comparison with a previous expansion of the authors 

In a previous paper Zitron and Karp [12] obtained a few terms of an asymptotic series in inverse 
powers of d by direct multiplication of several Taylor series which could be replaced by 
derivatives of plane waves with respect to angle. This relationship might have appeared to be 
a fortuitous accident. In contrast to the previous expansion, the present expansion (6-7) shows 
that this representation can be obtained systematically by a direct calculation, and is indepen- 
dent of the previous observation. Furthermore, the present expansion gives, the general term 
of the series explicitly. 

The calculation of terms in formula (6) is simpler than the previous method of Zitron and 
Karp [12]. The first two terms in the present expansion, when computed explicitly, agree with 
the corresponding terms in the previous paper, thus providing a verification. It should be noted 
that the definition of the complex scattering amplitude f(fi) of the far field here differs from that 
of Zitron and Karp [12]. Let f denote the complex scattering amplitude of the far field in 
Zitron and Karp [12]. The relation between the two amplitudes is then 

( k ~ e ~ i f  . f = \ 2~/ 

4. Comparison with other expansions 

This expansion is distinct from expansions obtained by other authors. A three-dimensional 
scalar expansion for large r is given by Sommerfeld [6]. A convergent three-dimensional vector 
expansion for large r was obtained by Wilcox [9]. A two-dimensional convergent expansion for 
large r was derived by Karp [3]. Expansions for large r which are more explicit have been 
obtained by Twersky [8] and by Burke, Censor and Twersky [1]. 

The present result, however, is given in terms of large d, rather than large r, thus providing an 
expansion in a new coordinate system whose origin O' is distinct from the previous origin O. 
Here, d is a parameter. This expansion, therefore, may be regarded as an asymptotic form of an 
addition theorem. Thus, expansions for large d have an advantage over expansions for large r 
in that they allow a translation to a new origin. 

The expansions for large d and large r may be contrasted as follows. The expansion for large d 
is good in a neighborhood of a predetermined point and is local in 0 while the expansion for 
large r is good in an entire angular neighborhood of the original origin (i.e. global in 0). However, 
the expansion for large d is given in terms Of wave functions, since derivatives of wave functions 
with respect to a parameter are wave functions, while the expansion for large r is not given in 
terms of wave functions. 

5. Applications of the theorem 

The expansion theorem may be employed in calculating the diffraction of an arbitrary two- 
dimensional radiating field. In such a calculation, the amplitude f(O) for the incident radiation 
will be known. The incident radiation will then be represented in the form (6-7), in a coordinate 
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system x, y fixed in the neighborhood of the scatterer. In addition, we must know the response 
amplitude f~ (0, 0o) of the scatterer in direction 0, due to the excitation by an incident plane wave 
exp {ik(x cos 00 + y sin 0o) } = v (0o). Since 0o is a paramete r, we can then calculate the response 
to any of the functions v tz~ (0) appearing in the expansion of the incident field. Since the response 
to a derivative of a plane wave is the derivative of the response to the plane wave, each term 
of the response to this incident radiation will have a coefficient identical to the one which 
appears in the expansion theorem (a linear combination of derivatives with respect to angle of 
incidence) operating on the response to a plane wave. For detailed illustrations, cf Zitron and 
Karp [12], Zitron and Davis [10], Zitron and Davis [11], and Karp and Zitron [13]. 
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